α Cupric Divanadate

By C.Calvo and R.Faggiani
Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada

(Received 16 January 1974; accepted 25 October 1974)

Abstract

Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}\), orthorhombic, Fdd2, $a=20 \cdot 645$ (20), $b=8.383$ (7), $c=6 \cdot 442$ (12) $\AA, Z=8, D_{\text {exp }}=3.969$, $D_{x}=3.94 \mathrm{~g} \mathrm{~cm}^{-3}$. Crystals were grown from a melt under O_{2} atmosphere. The anion, $\mathrm{V}_{2} \mathrm{O}_{7}$, contains a crystallographic twofold axis through the bridging oxygen atom with V-O bond lengths ranging from 1.648 (5) to 1.743 (2) \AA and a V-O-V angle of 147.8 $(5)^{\circ} . \mathrm{Cu}^{2+}$ is bonded strongly to four oxygen atoms with $\mathrm{Cu}-\mathrm{O}$ bond lengths ranging from 1.880 (5) to $1 \cdot 972$ (5) \AA and weakly to a fifth at $2 \cdot 542$ (4) \AA.

Introduction. The structure of $\alpha \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (MercurioLavaud \& Frit, 1973a) appeared after the completion of the present study. Since our refinement of this structure is more precise, if not more accurate, its publication seemed advisable.

Considerable interest has been generated in the study of the structures of the $\mathrm{M}_{2} \mathrm{X}_{2} \mathrm{O}_{7}$ series of compounds. The lattice parameters of all the divanadates for which single-crystal data, but not necessarily structures, are available are listed in Table 1. Surprisingly, a large number of unique structure types are found. The structure of the high-temperature form (β) of $\mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (Mercurio-Lavaud \& Frit, 1973b) is isostructural with that of $\alpha \mathrm{Zn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (Gopal \& Calvo, 1973). The nature of α to β transition in $\mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ is of considerable interest since the α form has not appeared previously in any related system.

The intensities and cell dimensions were obtained from a cubically shaped crystal with 0.05 mm as the average dimension. A Syntex $P \bar{I}$ automatic diffrac-
tometer was used (Mo $K \alpha$, graphite monochromatized, $\theta-2 \theta$ scan with variable scan rate, scintillation counter with pulse-height discrimination, a standard reflexion measured at intervals of 50 reflexions and backgrounds determined 1° from either side of the peak). Data were collected for a quadrant up to 20 of 50°, yielding a total of 488 symmetry-independent reflexions with intensities of positive measure and 28 unobserved (I between 0 and 3σ). The systematic absences are $h k l$ in general if either $h+k$ or $k+l$ is odd, for $0 k l$ if $k+l=4 n$ and $h 0 l$ if $h+l=4 n$. The data were corrected for Lorentz, polarization, absorption and extinction effects.
The structure was determined from the Patterson function. Full-matrix least-squares refinement with individual atomic anisotropic thermal parameters and weights, $\omega=\left[7 \cdot 5+0 \cdot 25 F_{o}+0 \cdot 005 F_{o}^{2}\right]^{-1}$ chosen so that $\omega\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ would be independent of F_{o}, resulted in a final R value of 0.028 .* The atomic parameters are in Table 2 and the thermal parameters in Table 3. The pertinent bond lengths and angles are in Table 4.

Discussion. The present refinement of the structure of $\alpha \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ does not differ significantly from that reported by Mercurio-Lavaud \& Frit (1973a). However, the standard errors are smaller by a factor of about ten. This allows a more detailed comparison of

[^0]Table 1. Unit-cell parameters for $\mathrm{M}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ structures

	$a(\AA)$	b (\AA)	$c(\AA)$	$\alpha\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	$\gamma\left({ }^{\circ}\right)$	Space group
$\mathrm{Mg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {a }}$	$5 \cdot 421$	4.937	10.750	99.49	$75 \cdot 17$	81-29	PI
$\mathrm{CO}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {b }}$	$6 \cdot 594$	$8 \cdot 370$	9.470		$100 \cdot 17$		$P 2_{1} / c$
$\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {b }}$	$6 \cdot 504$	$8 \cdot 298$	9.351		$100 \cdot 03$		$P 21 / c$
$\mathrm{Zn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {c }}$	$7 \cdot 429$	8.340	$10 \cdot 098$		111.37		C2/c
$\alpha \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$	20.645	8.383	$6 \cdot 442$				Fdd 2
$\beta \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {d }}$	$7 \cdot 685$	8.007	10.09		$110 \cdot 27$		C2/c
$\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {e }}$	$6 \cdot 710$	8.726	4.970		$103 \cdot 57$		C2/m
$\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {f }}$	$7 \cdot 088$	9.091	4.963		$103 \cdot 33$		C2/m
$\mathrm{Ca}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {g }}$	$7 \cdot 240$	$6 \cdot 663$	6.913	$96 \cdot 35$	87.68	$119 \cdot 55$	$P \overline{1}$
$\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {a }}$	13.389	$7 \cdot 1616$	$7 \cdot 1027$		109.93		$P 2_{1} / a$
$\mathrm{Sr}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {d }}$	7.055	7.055	$25 \cdot 642$				$P{ }^{1}$
$\alpha \mathrm{Hg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\mathbf{j}}$	$7 \cdot 165$	3.636	21.51				Pnma
$\mathrm{Ba}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {k }}$	$13 \cdot 571$	$7 \cdot 320$	$7 \cdot 306$	90.09	99.48	87-32	$P \overline{1}$

References:

a Gopal \& Calvo (1974). b Sauerbrei, Faggiani \& Calvo (1974). c Gopal \& Calvo (1973). d Mercurio-Lavaud \& Frit (1973b). e Dorm \& Marinder (1967). f Au \& Calvo (1967). g Manolescu (1974). h Shannon \& Calvo (1973). i Baglio \& Dann (1971). j Quarton, Angenault \& Rimsky (1973). k Hawthorne \& Calvo (1975).

Table 2. Atomic positions in $\alpha \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$

		x	y	z
Cu	$16(b)$	$0 \cdot 16580(4)$	$0.36460(9)$	$\frac{3}{4}$
V	$16(b)$	$0.19906(4)$	$0.4054(1)$	$0.2343(2)$
$\mathrm{O}(2)$	$16(b)$	$0.2453(2)$	$0.5622(6)$	$0.2774(8)$
$\mathrm{O}(3)$	$16(b)$	$0.1446(2)$	$0.4368(5)$	$0.0332(7)$
$\mathrm{O}(4)$	$16(b)$	$0 \cdot 1619(2)$	$0.3477(5)$	$0.4592(8)$
$\mathrm{O}(1)$	$8(a)$	$\frac{1}{4}$	$\frac{1}{4}$	$0.1592(12)$

the effect of the environment on the bond lengths. The $\mathrm{V}-\mathrm{O}(1)$ and $\mathrm{V}-\mathrm{O}(3)$ bond lengths are the same length despite the fact $\mathrm{O}(1)$ is the bridging oxygen atom in the divanadate group. The $\mathrm{V}-\mathrm{O}(2)$ bond is the shortest and the $\mathrm{V}-\mathrm{O}(4)$ bond is of intermediate length. This trend is expected since $\mathrm{O}(3)$ is bonded strongly to two Cu ions, $O(2)$ to one and $O(4)$ is bonded strongly to one and weakly to another Cu ion.

The Cu ion shows fivefold coordination to oxygen atoms with the sixth oxygen atom over $3 \AA$ from the Cu . The $\mathrm{Cu}-\mathrm{O}$ bonds of intermediate length, lying between 1.943 and $1.972 \AA$, are significantly different in the present study. The shortest $\mathrm{Cu}-\mathrm{O}$ bond is trans to the empty sixth site in the coordination sphere about Cu .
The relationship between the α and $\beta \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ structures is a curious one. Each structure contains sheets of $\mathrm{V}_{2} \mathrm{O}_{7}$ groups with a staggered configuration and lying on a crystallographic twofold axis (Fig. 1). Adjacent anions in the sheet are generated by C centring. The anions in a given sheet in $\alpha \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ must be rotated by 25°, about the twofold axes, towards the plane of the sheet (the $b c$ plane). Those in the next adjacent sheet must be inverted about the $\mathrm{V}-\mathrm{V}$ vector before the rotation in order to generate the anion packing of $\beta \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$. After such changes the structure will have a monoclinic cell defined by b, c and
$\frac{1}{2}(a+b)$, in terms of the unit cell of $\alpha \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$, whose dimensions ($a^{\prime}=8 \cdot 411, b^{\prime}=6 \cdot 448, c^{\prime}=11 \cdot 140 \AA$ and $\beta=112 \cdot 1^{\circ}$) are roughly as in $\beta \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$. Finally, adjacent sheets must slip alternately by about $+c / 8$ and $-c / 8$ in order to accommodate the changed bonding environment of the Cu ions. Each Cu ion must break and reform at least three $\mathrm{Cu}-\mathrm{O}$ bonds through the transition. These changes seem large for a reversible transformation.

Fig. 1. Structure of $\mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ projected on the $a b$ plane. The anions, $\mathrm{V}_{2} \mathrm{O}_{7}$, are represented by edge-shared tetrahedra and the Cu ions by circles. Three bonds are shown to one of the copper ions. The remaining bonds are to $\mathrm{O}(1)$ directly below the copper ion and $\mathrm{O}(3)$ from the next cell along the c axis. The dashed lines outline the $\beta \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ cell.

Table 3. Thermal parameters ($\times 10^{3}$) for atoms in $\mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$
$U_{i j}=\left(2 \pi b_{i} b_{j}\right)^{-1} \beta_{l j}$. The $\beta_{i j}$ appear in the structure factor as $\exp \left[-\left(\beta_{11} h^{2}+\ldots+2 \beta_{12} h k+\ldots\right)\right]$ and the b_{i} 's are reciprocal-lattice parameters.

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cu	18.4 (3)	$26 \cdot 5$ (4)	$5 \cdot 8$ (3)	12.0 (3)	-3.2 (3)	-4.6 (3)
V	$3 \cdot 9$ (3)	$10 \cdot 1$ (4)	$1 \cdot 1$ (3)	-0.1 (3)	$0 \cdot 1$ (3)	$0 \cdot 3$ (4)
$\mathrm{O}(2)$	15.0 (2)	$34 \cdot 0$ (2)	13.0 (2)	13.0 (2)	-1.0 (2)	-1.0 (2)
O(3)	$10 \cdot 0$ (1)	14.0 (2)	6.0 (2)	$4 \cdot 0$ (1)	1.0 (1)	-4.0 (2)
$\mathrm{O}(4)$	$15 \cdot 0$ (2)	$16 \cdot 0$ (2)	$7 \cdot 0$ (2)	$2 \cdot 0$ (1)	$2 \cdot 0$ (2)	1.0 (2)
$\mathrm{O}(1)$	29.0 (3)	42.0 (4)	14.0 (3)	-29.0 (3)		

Table 4. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$

$\mathrm{Cu}-\mathrm{O}(4)^{a}$	$1.880(5)$
$\mathrm{O}(4)^{b}$	$2.542(4)$
$\mathrm{O}(2)^{c}$	$1.943(5)$
O()$\left.^{a}\right)^{a}$	$1.972(5)$
$\mathrm{O}(3)^{d}$	$1.955(4)$
$\mathrm{V}-\mathrm{O}(1)^{a}$	$1.743(2)$
$\mathrm{O}(2)^{a}$	$1.648(5)$
$\mathrm{O}(3)^{a}$	$1.736(4)$
$\mathrm{O}(4)^{a}$	$1.709(5)$

$\mathrm{O}(4)^{a}-\mathrm{Cu}-\mathrm{O}(4)^{b}$	$85.9(2)$
$\mathrm{O}(2)^{c}$	$98.9(2)$
$\mathrm{O}(3)^{a}$	$159.3(2)$
$\mathrm{O}(3)^{d}$	$91.4(2)$
$\mathrm{O}(3)^{a}-\mathrm{Cu}\left(\mathrm{O}(3)^{d}\right.$	$89.5(2)$
$\mathrm{O}(1)^{a}-\mathrm{V}-\mathrm{O}(2)^{a}$	$107.0(2)$
$\mathrm{O}(3)^{a}$	$107.3(3)$
$\mathrm{O}(4)^{a}$	$107.1(3)$
$\mathrm{V}-\mathrm{O}(1)-\mathrm{V}^{\prime}$	$147.8(5)$

$\mathrm{O}(4)^{b}-\mathrm{Cu}-\mathrm{O}(2)^{c}$	$111.3(2)$
O()a	$73.7(2)$
O()d	$101.3(2)$
$\mathrm{O}(2)^{c}-\mathrm{Cu}-\mathrm{O}(3)^{a}$	$91.7(2)$
$\mathrm{O}(3)^{d}$	$146 \cdot 4(2)$
$\mathrm{O}(2)^{a}-\mathrm{V}-\mathrm{O}()^{a}$	$112.4(2)$
$\mathrm{O}(4)^{a}$	$110 \cdot 1(2)$
$\mathrm{O}(3)^{a}-\mathrm{V}-\mathrm{O}(4)^{a}$	$112.6(2)$

Symmetry transformations (exclusive of lattice translations): $a x, y, z ; b \frac{1}{4}-x, \frac{1}{4}+y, \frac{1}{4}+z ; c-x, \frac{1}{2}-y, \frac{1}{2}+z ; d \frac{1}{4}-x, \frac{3}{4}+y, \frac{3}{4}+z$.

Table 5. V-O bond lengths (\AA) and $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angles $\left(^{\circ}\right)$ in $\mathrm{M}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ structures

	$\left\langle\mathrm{V}-\mathrm{O}_{\boldsymbol{t}}\right.$ 〉	$\left\langle\mathrm{V}-\mathrm{O}_{\mathrm{t}}\right.$ 〉	$\mathrm{V}-\mathrm{O}-\mathrm{V}$
$\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {a }}$	1.69	1.760	180
$\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {b }}$	1.692	1.757	180
$\mathrm{Zn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {c }}$	1.697	1.751	151
$\beta \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {d }}$	1.693	1.770	
$\alpha \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$	1.702	1.743	$147 \cdot 8$
$\mathrm{Ba}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {e }}$	1.687	1.820	123.7
	1.688	1.823	$125 \cdot 6$
$\mathrm{Sr}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {f }}$	1.69	1.81	122
	1.71	1.81	124
$\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {g }}$	1.692	1.817	122
$\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {n }}$	1.694	1.849	$117 \cdot 6$
$\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}{ }^{\text {h }}$	1.692	1.846	$117 \cdot 1$

a Dorm \& Marinder (1967). b Au \& Calvo (1967). c Gopal \& Calvo (1973). d Mercurio-Lavaud \& Frit (1973b). e Hawthorne \& Calvo (1975). f Baglio \& Dann (1971). g Shannon \& Calvo (1973). h Sauerbrei, Faggiani \& Calvo (1974).

* The table of atomic positions in this paper seems to contain errors. The values used here are those reported by these authors.

Table 5 summarizes the average bridging and terminal $\mathrm{V}-\mathrm{O}$ bond lengths and $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bond angles in the series of divalent metal ion divanadates. As the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ angle increases the average bridging $\mathrm{V}-\mathrm{O}$ bond length, $\left\langle\mathrm{V}-\mathrm{O}_{b}\right\rangle$, decreases. The average terminal $\mathrm{V}-\mathrm{O}$ bond length shows no systematic variation. All anions with V-O-V bond angles of less than 148° have strong interactions between the divalent metal ion and the bridging oxygen atom. Therefore, these structures seem to fall into two groups based upon this characteristic. In the case of $\mathrm{Mg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (Gopal \& Calvo, 1974) one side of the anion has a long, but significant, interaction with a fifth oxygen atom ($\mathrm{V}-\mathrm{O}=2 \cdot 440 \AA$).

Despite this, the structure is closely related to the thortvietite-like series of compounds. Many of these divalent metal ion divanadates show polymorphic transition. For example, Angenault (1970) has reported an orthorhombic phase of $\mathrm{Zn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ which is likely to be isotypic with that of $\alpha \mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$. Further studies of these polymorphs seems desirable.

This research has been supported by a grant from the National Research Council of Canada.

References

Angenault, J. (1970). Rev. Chim. Min. 7, 651-699.
Au, P. K. L. \& Calvo, C. (1967). Canad. J. Chem. 43, 2297-2302.
Baglio, J. A. \& Dann, J. N. (1971). J. Solid State Chem. 4, 87-93.
Dorm, E. \& Marinder, B. (1967). Acta Chem. Scand. 21, 590-591.
Gopal, R. \& Calvo, C. (1973). Canad. J. Chem. 51, 10041009.

Gopal, R. \& Calvo, C. (1974). Acta Cryst. B30, 2491-2493.
Hawthorne, F. \& Calvo, C. (1975). To be published.
Manolescu, D. (1974). M. Sc. Thesis, McMaster Univ. Hamilton, Ontario, Canada.
Mercurio-Lavaud, D. \& Frit, B. (1973a). Acta Cryst. B29, 2737-2741.
Mercurio-Lavaud, D. \& Frit, B. (1973b). C. R. Acad. Sci. Paris, Ser. C, 277, 1101-1104.
Quarton, M., Angenault, J. \& Rimsky, A. (1973). Acta Cryst. B29, 567-572.
Sauerbrei, E. E., Faggiani, R. \& Calvo, C. (1974). Acta Cryst. B30, 2907-2909.
Shannon, R. D. \& Calvo, C. (1973). Canad. J. Chem. 51, 70-76.

Acta Cryst. (1975). B31, 605

The Crystal Structure of Tetra-(4-methylphenyl)tin

By Anastas Karipides and Karen Wolfe
Department of Chemistry, Miami University, Oxford, Ohio 45056, U.S.A.

(Received 8 August 1974; accepted 11 October 1974)

Abstract

CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{Sn}\), tetragonal, $I \overline{4}, a=$ 13.819 (8), $c=6 \cdot 406$ (4) $\AA, Z=2, D_{c}=1 \cdot 31, D_{o}=1 \cdot 32$ $\mathrm{g} \mathrm{cm}^{-3}$ (by flotation in aqueous KI solution). The structure consists of discrete molecules which have crystallographic $\overline{4}$ symmetry. The methyl group is rigidly involved in the intermolecular structure. The final R value is 0.035 .

Introduction. The title compound was prepared from the reaction of anhydrous tin tetrachloride and 4methylphenylmagnesium bromide in ether/benzene solution. The purified compound was isolated from the crude reaction product by Soxhlet extraction and re-

crystallized from benzene as long colorless glistening needles. From indexed Weissenberg photographs the systematic absences $h+k+l=2 n+1$ confirmed the body-centered tetragonal lattice found by Ismailzade \& Zhdanov (1953). Cell parameters were determined by a least-squares refinement of the carefully measured angular settings of 12 reflections on a Picker FACS-1 automated diffractometer. The refined values given in the abstract compare with $a=13 \cdot 50$ and $c=6 \cdot 36 \AA$ reported by Ismailzade \& Zhdanov (1953).

Three-dimensional intensity data were collected on the same diffractometer with zirconium-filtered Mo $K \alpha$ ($\lambda=0.71069 \AA$) radiation. The details of the data col-

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30750 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.

